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Abstract

The loss of strong ellipticity is analyzed for a rate independent in®nitesimal elastoplastic model. This local
stability condition corresponds to the loss of positive de®niteness of the symmetric part of the acoustic tensor. First,
in the case of multisurface plasticity some expressions for the plastic hardening moduli are obtained for various

bifurcation criteria. Next, explicit expressions for the critical plastic hardening modulus and the critical orientation
are obtained in the case of single-surface plasticity (Hill type comparison solid). The analysis is based on a
geometric method. Linear, isotropic elasticity, and a general nonassociative ¯ow rule are assumed. However, the
principal axes of the second order tensors of the plastic potential and yield surfaces gradients are coaxial. It is

shown that, similar to the loss of ellipticity, the direction of the critical orientation is identical to one of the
principal directions, except in the particular case where the gradient of the plastic potential and yield surfaces each
have a double eigenvalue. In particular, explicit expression for the plastic hardening modulus, using the same

geometric method, is also presented for the Raniecki type comparison solid. As an illustrative example, the critical
orientation for the loss of strong ellipticity and the classical shear band localization (loss of ellipticity) are compared
for axially-symmetric compression and tension. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, a large number of theoretical and computational contributions to the analysis of

strain localization have been made. The conditions for the classical shear band localization in rate

independent materials are now well-understood. The basic principles of classical discontinuous

bifurcation were ®rst discussed by Hadamard (1903), Hill (1962), Mandel (1962), and later by Rudnicki

and Rice (1975) and Rice (1976). Based on Rice's work, the general formulation of localization of
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deformation into shear bands in the small deformation range can be considered well established, and it
was applied to predict the orientation of shear bands for various types of material models (see, e.g.
Bardet, 1990; Bigoni and Hueckel, 1990a, 1990b, 1991; Ichikawa et al., 1990; Ottosen and Runesson,
1991a; Benallal, 1992). Shear bands in the large deformation range have also been extensively studied in
the literature (e.g. Molenkamp, 1985; Zbib and Aifantis, 1988; Zbib, 1989, 1991, 1993; Yatomi et al.,
1989; Duszek and Perzyna, 1991; Bigoni and Zaccaria, 1993; SzaboÂ , 1994; Steinmann et al., 1997).

A standard method for calculating the critical shear band orientation and critical plastic hardening
modulus is based on the vanishing of the determinant of the acoustic tensor, which is derived from the
tangential constitutive sti�ness tensor. This condition yields a set of plastic hardening moduli from
which the critical value is obtained in a maximization procedure. This problem was solved by several
authors, under the assumption of coaxiality of the gradients of plastic potential and the yield surface. A
number of these works use the Lagrange multiplier method (see, e.g. Rudnicki and Rice, 1975; Bigoni
and Hueckel, 1990a, 1991; Runesson et al., 1991; Ottosen and Runesson, 1991a, 1991b), or employ the
geometrical method proposed by Benallal (1992) (see, e.g. Benallal and Comi, 1993, 1996; Perrin and
Leblond, 1993; SzaboÂ , 1994).

The criterion for the classical discontinuous bifurcation which corresponds to the loss of ellipticity is
that the acoustic tensor has a zero eigenvalue. This instability refers to the onset of shear band
localization. It is well known that when the elasto±plastic constitutive model is based on a
nonassociative ¯ow rule the constitutive tangent tensor and the acoustic tensors are not symmetric. In
this case the real-valued eigenspectrum of the nonsymmetric acoustic tensor is bounded by the minimum
and maximum eigenvalues of the symmetrized acoustic tensor, and the loss of positive de®niteness of the
symmetric part of the acoustic tensor will occur before the loss of ellipticity. This phenomenon
corresponds to the loss of strong ellipticity, and it was analyzed by Ottosen and Runesson (1991a),
Bigoni and Zaccaria (1992a, 1992b), Neilsen and Schreyer (1993) and, more recently, by Rizzi et al.
(1996), and SzaboÂ (1997). The condition of strong ellipticity is satis®ed prior to the classical
discontinuous bifurcation criterion.

In the context of loss of ellipticity (onset of shear bands), several explicit expressions for the critical
plastic hardening modulus and critical shear band orientation have been obtained for rate independent
associative and nonassociative elastoplasticity (see, e.g. some recent surveys: Needleman and Tvergaard,
1992; Petryk, 1997). Much less work has been done, however, for the case of loss of strong ellipticity.
The critical plastic hardening modulus was calculated numerically for the nonassociative Drucker±
Prager model, by Neilsen and Schreyer (1993). Bigoni and Zaccaria (1992a) have shown that the critical
plastic hardening modulus for the loss of strong ellipticity is identical for the Raniecki and Hill type
comparison solids. In addition, they have presented an analytical solution for the critical plastic
hardening modulus in the case of the Raniecki comparison solids. In their work, ®rst, a maximization
problem is solved for an associative ¯ow rule associated to the Raniecki type comparison solid. Then, a
minimization problem is de®ned for the plastic hardening modulus determined from the maximization
process, respect to a free parameter, which corresponds to the Raniecki's comparison solids. Although,
this minimization problem can be solved easily, explicit expressions for the critical plastic hardening
modulus and critical orientation similar to that ones, which are available in many papers for the case of
loss of ellipticity (e.g. Runesson et al., 1991; Ottosen and Runesson, 1991a), were not presented.

The main purpose of this paper is to obtain a closed form solution for the loss of strong ellipticity for
a Hill type comparison solid. The constitutive model considered here is based on a rate independent
elastoplasticity theory with a general nonassociative ¯ow rule in the small strain range.

In the ®rst part, the loss of ellipticity and the loss of strong ellipticity are analyzed for a general
multisurface plasticity model, which is referred to as the corner ¯ow rules with of interaction several
yield and plastic potential surfaces (as in Asaro, 1983; Koiter, 1960; Mandel, 1965; Ottosen and
Ristinmaa, 1996; Steinmann, 1996; among others). In this context, some explicit expressions for the
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plastic hardening moduli are presented. Moreover, an expression of plastic hardening moduli obtained
from the general bifurcation condition (loss of uniqueness) is also derived.

Then, an explicit expression for the critical plastic hardening modulus and critical orientation is
derived for single-surface plasticity (Hill type comparison solid). In this case, linear, isotropic elasticity is
assumed, and {the principal axes of the second order tensors of the plastic potential and yield surfaces
gradients are coaxial, which limits the analysis to isotropic hardening only. This analysis is based on the
geometric method which was ®rst proposed by Benallal and Lemaitre (1991) and Benallal (1992). It is
pointed out, however that, the geometric method used in this paper is slightly di�erent from that of
Benallal (1992).

In addition, explicit expression for the critical plastic hardening modulus in the case of Raniecki type
comparison solid, using the same geometric method, is considered in Appendix B

Finally, as an illustrative example, the critical orientation for the loss of strong ellipticity and the
classical shear band localization (loss of ellipticity) are compared for axially-symmetric compression and
tension.

Regarding notation, tensors are denoted by bold-face characters, the order of which is indicated in the
text. The tensor product is denoted by 
, and the following symbolic operations apply: g�n=gini,
(A�n)i=Aijnj, (A�B)ij=AikBkj, A:B=AijBij and (C:A)ij=CijklAkl, with the summation convention over
repeated indices. The superposed dot denotes the material time derivative, or rate. The superscripts T
and ÿ1 denote transpose and inverse, and the pre®x tr indicates the trace. The symbol6�6 is used to
denote Euclidean norm. The fourth and second-order identity tensors are denoted by I and dd,
respectively.

2. Constitutive relations and localization conditions

2.1. Constitutive relation

In the general case of rate independent multisurface elasto±plasticity, the widely used form of the
constitutive relations in the small deformation range is expressed in terms of a relation between the
stress rate and strain rate:

Çsss � Dep:Çeee, �1�
where

Dep � De ÿMabDe:Pa 
Qb:D
e; a,b 2 �1,n� �2�

is the incremental elasto±plastic sti�ness tensor, and the summation convention with respect to repeated
greek indices is adopted. Here, De is the fourth-order elasticity tensor,, Pa and Qb are the unit outward
normals to the plastic potential and yield surfaces, and the matrix Mab is de®ned by

�Mab�ÿ1 � mab � hab �Qa:D
e:Pb, �3�

where hab is the matrix of plastic moduli. In the present paper, the multisurfaces plasticity is referred to
as the corner ¯ow rules with of interaction several plastic potential and yield surfaces. Note that the
inequalities for the stress rates specifying in the corner domain are not discussed in this paper.

There are a number of constitutive models in which the tangent operators are closely related to Dep

de®ned in
Eq. (2), for example, in the single crystal plasticity: Asaro (1983), Peirce (1983), Dao and Asaro (1996);
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in the corner theories: Koiter (1960), Mandel (1965), Sewell (1973, 1974), Simo et al. (1988) and Reddy
and GuÈ ltop (1995) (for associated plasticity), Ottosen and Ristinmaa (1996) (for non-associated
plasticity); in general multisurface elastoplasticity: Rizzi et al. (1996), Sawischlewski et al. (1996) and
Steinmann (1996).

In the single-surface plasticity (a=b=1), the tensor Dep takes on the following simple form:

Dep � De ÿ De:P
Q:De

H�Q:De:P
, �4�

where H is the generalized plastic hardening modulus. Note that the tangent operator in this form
de®ned above was considered, for example, by PreÂ vost (1984), Bardet (1990) and Loret (1992).

2.2. The loss of ellipticity and loss of strong ellipticity conditions

2.2.1. Loss of ellipticity
Based on the analysis of acceleration waves (see, e.g. Hill, 1962; Mandel, 1962; Loret et al., 1990;

Ottosen and Runesson, 1991b; Loret, 1992), or the general method of the shear band localization (see,
e.g. Rudnicki and Rice, 1975; Rice, 1976; Rice and Rudnicki, 1980; BorreÂ and Maier, 1989; Bigoni and
Hueckel, 1991; Ottosen and Runesson, 1991a; Runesson et al., 1991; Neilsen and Schreyer, 1993), the
second-order acoustic tensor Bep for the constitutive relations Eq. (1) is given by

Bep � n � De � nÿMabn � �De:Pa� 
 �Qb:D
e� � n, �5�

where n is unit vector normal to the front of the acceleration waves, or normal to the plane of
discontinuity. The ®rst term on the right-hand side of Eq. (5) can be de®ned as the elastic acoustic
tensor

Be � n � De � n, �6�
and the quantities n�(De:Pa ) and (Qb:D

e)�n by introducing two families of vectors, can be written as

aa � n � �De:Pa�
and

bb � �Qb:D
e� � n: �7�

The loss of ellipticity criterion corresponds to the singularity of the acoustic tensor. When the acoustic
tensor has a zero eigenvalue the determinant of Bep equals zero

det Bep � 0, �8�
which is the necessary condition for the localization.

2.2.2. Loss of strong ellipticity
The loss of strong ellipticity corresponds to the loss of positive de®niteness of the symmetric part of

the acoustic tensor (Bigoni and Hueckel, 1991; Ottosen and Runesson, 1991a; Bigoni and Zaccaria,
1992a, 1992b; Neilsen and Schreyer, 1993; Rizzi et al., 1996). Equivalently, the loss of strong ellipticity
is ®rst satis®ed when the determinant of the symmetrized acoustic tensor is equal to zero

det Bep
sym � 0, �9�
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where Bep
sym is de®ned by

Bep
sym � Be

sym ÿ
1

2
Mab�aa 
 bb � ba 
 ab�: �10�

Note that, since the elasticity tensor De is symmetric, the elastic acoustic tensor is identical its
symmetric part, Be � Be

sym:

3. The plastic hardening moduli

3.1. Single-surface plasticity (a=b=1)

For single-surface plasticity an explicit expression for the plastic hardening modulus, using the
conditions (Eq. (8) or Eq. (9)) can be easily derived. In this context several methods have been used (see
e.g. Rice, 1976; Peirce, 1983; Molenkamp, 1985; Bigoni and Hueckel, 1991; Benallal, 1992; Bigoni and
Zaccaria, 1992a; Doghri and Billardon, 1995; Steinmann, 1996). One of these (Steinmann, 1996) is based
on the Sherman±Morrison formula, which will be applied in the present paper.

3.1.1. Loss of ellipticity
In this case, the acoustic tensor is de®ned by

Bep � Be ÿMa
 b, �11�
where M=1/(H+Q:De:P),

a � n � �De:P�
and

b � �Q:De� � n: �12�
The inverse of Bep can be done in an elementary way, similarly to the inversion of the elastoplastic

constitutive tensor. The result takes the form

Bepÿ1 � Beÿ1 � Beÿ1 � a
 b � Beÿ1

1

M
ÿ b � Beÿ1 � a

: �13�

When the condition det Bep=0 holds, the tensor Bep cannot be inverted. Then, it follows from Eq.
(13) that 1/Mÿb�Beÿ1�a=0. From this condition, the plastic hardening modulus is given by

H le � �Q:De � n� � Beÿ1 � �n � De:P� ÿQ:De:P: �14�
which has been derived by Rice (1976).

3.1.2. Loss of strong ellipticity
In the case of loss of strong ellipticity, the symmetrized acoustic tensor is expressed as

Bep
sym � Be

sym ÿ
1

2
M�a
 b� b
 a� � Aÿ 1

2
Ma
 b, �15�
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where

A � Be
sym ÿ

1

2
Mb
 a: �16�

In analogy with Eq. (13), we may de®ne the inverse of Bep
sym according to

Bepÿ1
sym � Aÿ1 � Aÿ1 � a
 b � Aÿ1

2

M
ÿ b � Aÿ1 � a

�17�

where the inverse of A is de®ned by

Aÿ1 � Beÿ1
sym �

Bÿ1sym � b
 a � Bÿ1sym

2

M
ÿ a � Bÿ1sym � b

�18�

For the loss of strong ellipticity, the following implication holds:

detBep
sym � 0 �) 2

M
ÿ b � Aÿ1 � a � 0: �19�

Use of Aÿ1 in this relation implies

� 2
M
ÿ b � Beÿ1

sym � a�2 ÿ �a � Beÿ1
sym � a��b � Beÿ1

sym � b� � 0: �20�

From this condition, the plastic hardening modulus can be derived as

H lse � 1

2

�
�Q:De � n� � Beÿ1

sym � �n � De:P�

�
������������������������������������������������������������������������������������������������������������������
��P:De � n� � Beÿ1

sym � �n � De:P����Q:De � n� � Beÿ1
sym � �n � De:Q��

q �
ÿQ:De:P: �21�

It follows from Eq. (20) that the discriminant in Eq. (21) is always greater than (or equal to) zero.
Note that an identical expression was derived by Bigoni and Zaccaria (1992a), albeit in a di�erent

way.
For loss of ellipticity and for loss of strong ellipticity the critical plastic hardening modulus

corresponds to the solution of the following constrained maximization problems:

H le
crit � max

n
�H le� and H lse

crit � max
n
�H lse�,

subject to |n|=1, respectively.

3.2. Multisurface plasticity (a, b $ [1, n])

In the case of multisurface plasticity, the second-order acoustic tensor Bep (in Eq. (5)) has the form of
a multiple rank one modi®cation of the elastic acoustic tensor. The task is to ®nd an explicit expression
for the plastic hardening moduli by means of the determinant of Bep (for loss of ellipticity), and its
symmetric part (for loss of strong ellipticity) is equal to zero.

A closed form expression to compute the determinant of a matrix with multiple rank one updates was
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presented by Steinmann (1996). In his study, a recursive application of the Sherman±Morrison formulas
has been employed, and for the loss of ellipticity an explicit expression for the plastic hardening moduli
in the cases of double, triple, and multisurface plasticity have been presented. Unfortunately, the
application of the method presented by Steinmann (1996) for the case of loss of strong ellipticity is
rather di�cult because the number of rank one updates in the symmetrized acoustic tensor are twice as
much.

However, using the following Lemma, we can obtain expressions for the plastic hardening moduli for
various bifurcation criteria. Here we generalize the Sherman±Morrison formula to general case with a
multiple rank one updates. Note that in several studies the Sherman±Morrison formula for the case of
the sum of a regular matrix and one rank one updates, was employed, e.g., SzaboÂ (1985), Doghri and
Billardon (1995), Steinmann (1996), Rizzi et al. (1996) and Steinmann et al. (1997).

Lemma 1. Let B and C be two second-order tensors, and let aa and bb be two families of vectors, where
a, b $ [1, n ]. De®ne B as a sum of rank one updates of the non-singular tensor C

B � CÿMabaa 
 bb, �22�

where the matrix Mab is invertible, and its inverse denoted by

�Mab�ÿ1 � mab �)Magmgb � dab: �23�

Then, the inverse of B, is given by

Bÿ1 � Cÿ1 � G abCÿ1 � aa 
 bb � Cÿ1, �24�

where

G ÿ1ab � mab ÿ ba � Cÿ1 � ab: �25�

The proof of this lemma requires a simple veri®cation, namely, multiplying B by Bÿ1 de®ned by Eq.
(25), we directly obtain dd.

Remark 1. In the simple case where the tensor B is de®ned in the form of single rank one update of C
(B=CÿM a
 b), the determinant of B can be expressed as (SzaboÂ , 1994; Steinmann, 1996):

det B � det C�1ÿMb � Cÿ1 � a�:
The extension of this result to multiple rank one updates can be obtained analogously. The

determinant of B (in Eq. (22)) is de®ned by

det B � det C det
h
dab ÿMad

�
bd � Cÿ1 � ab

�i
, �26�

which coincides with the result obtained by Steinmann (1996). When the matrix Mad is nonsingular (and
its inverse denoted by mad ), the expression de®ned above can be rewritten as

det B � det C det�Mgd�det�mab ÿ ba � Cÿ1 � ab�: �27�
Since det C$0 and det(Mgd )$0, it is concluded that

det B � 0 �) det�mab ÿ ba � Cÿ1 � ab� � 0: �28�
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Let us examine the loss of ellipticity and loss of strong ellipticity using Lemma 1.

3.2.1. Loss of ellipticity
For the loss of ellipticity, from Eq. (24) (or Eq. (28)), using Eqs. (3) and (5)±(7), the following

condition is immediately obtained:

det Bep � 0 �) det�hab �Qa:D
e:Pb ÿ ba � Beÿ1 � ab� � 0: �29�

As mentioned above, a similar expression has been derived by Steinmann (1996). Note that Lemma 1
presented here allows one to obtain a result in simpler way. We also note that the same result was
presented by Peirce (1983) in the context of single crystal plasticity.

3.2.2. Loss of strong ellipticity
Analogous to the case of single-surface plasticity, from the condition

detBep
sym � 0, �30�

where Bep
sym de®ned by Eq. (10), using Eq. (24), the following condition can be obtained

det

�
hab �Qa:D

e:Pb ÿ 1

2
ba � Beÿ1

sym � ab ÿ 1

4
�ba � Beÿ1

sym � bg�N gd�ad � Beÿ1
sym � ab�

�
� 0: �31�

The inverse of Ngd is de®ned by

Nÿ1gd � hgd �Qg:D
e:Pd ÿ 1

2
bg � Beÿ1

sym � ad, �32�

here the indices a, b, g and d $ [1, n ].
For convenience, we introduce the notations:

Rab � 1

2
ba � Beÿ1

sym � ab ÿQa:D
e:Pb,

Bab � 1

2
ba � Beÿ1

sym � bb

and

Aab � 1

2
aa � Beÿ1

sym � ab, �33�

where Rab, Bab and Aab are the elements of the n � n matrices R, B and A, respectively. With these
matrices, Eq. (31) takes the form

det�hÿ Rÿ B�hÿ R�ÿ1A� � 0, �34�
where h=[hab ] is the matrix of plastic hardening moduli.

Remark 2. It is important to note that Lemma 1 given above is also valid when B and C are fourth-
order tensors, and when aa and bb are two families of second-order tensors. As an illustration, we will
give example of how to compute the critical plastic hardening moduli for the general bifurcation
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criterion. Some recent discussions of the bifurcations of elasto±plastic solids have shown that the loss of
material stability corresponds to the loss of positive de®niteness of the symmetric part of the elasto±
plastic sti�ness tensor (see, e.g. Ottosen and Runesson, 1991a; Neilsen and Schreyer, 1993; Ottosen and
Ristinmaa, 1996). Equivalently, the necessary condition for a general bifurcation (loss of uniqueness) is
®rst satis®ed when the fundamental eigenvalue of the symmetric part of the fourth-order constitutive
tangent tensor is equal to zero.

The symmetric part of the fourth-order elasto±plastic sti�ness tensor, Dep (in Eq. (2)), can be
expressed as

Dep
sym � De ÿ 1

2
MabDe:�Pa 
Qb �Qa 
 Pb�:De; a,b 2 �1,n�: �35�

The general bifurcation criterion is ®rst satis®ed when the determinant of Dep
sym is equal to zero

(Neilsen and Schreyer, 1993):

det Dep
sym � 0: �36�

From this condition, using Eq. (31) with the following identi®cations, aa 4 De:Pa, bb 4 Qb:D
e and

Beÿ1
sym4Deÿ1, the criterion for loss of uniqueness is de®ned by

det

�
hab � 1

2
Qa:D

e:Pb ÿ 1

4
�Qa:D

e:Qg�Z gd�Pd:D
e:Pb�

�
� 0 �37�

where a, b, g and d $ [1, n ], and the inverse of Zgd is de®ned by

Z ÿ1gd � hgd � 1

2
Qg:D

e:Pd: �38�

It should be noted that a similar result is derived by Ottosen and Ristinmaa (1996) in a di�erent way.

3.3. Example: Double-surface plasticity (a, b $ [1, 2])

As an illustrative example of the method developed above, we will derive an explicit expression for
the plastic hardening moduli in the case of double-surface plasticity. In this example the one parameter
family of hardening moduli (see, e.g. Hutchinson, 1970; Asaro, 1983) is considered, which in the present
case can be expressed as

hab � HKab or h � HK, �39�
where the matrix K does not depend on H explicitly.

3.3.1. Loss of ellipticity
For convenience, we introduce the L matrix of order 2 with coe�cients

Lab � ba � Beÿ1 � ab ÿQa:D
e:Pb: �40�

With this notation, the localization condition (29) now becomes:

det�HKÿ L� � 0 �41�
from which, using the Cayley±Hamilton theorem, we formulate a quadratic equation for the plastic
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hardening modulus:

�det K�H 2 � �tr�KL� ÿ tr K tr L�H� det L � 0: �42�

3.3.2. Loss of strong ellipticity
In the case of double-surface plasticity, the matrices R, B and A de®ned by Eq. (33) are of order 2.

The condition de®ned by Eq. (34) can be expressed as a fourth degree polynomial equation with respect
to H:

a4H
4 � a3H

3 � a2H
2 � a1H� a0 � 0, �43�

where the parameters ai (i $ [0, 4]) are de®ned by:

a4 � �det K�2,

a3 � 2 det Kftr�KR� ÿ tr K tr Rg,

a2 � 2 det K det Rÿ �tr R�2 tr�BA� ÿ tr�KBKA� � tr Kftr�BKA� � tr�KBA�g � ftr�K,R� ÿ tr K tr Rg2,

a1 � 2 det Rftr�KR� ÿ tr K tr Rg � 2 tr K tr R tr�BA� � tr�KBRA� � tr�RBKA� ÿ tr Rftr BKA�

� tr�KBA�g ÿ tr Kftr BRA� � tr�RBA�g

and

a0 � det A det B� �det R�2 ÿ �tr R�2 tr�BA� � tr Rftr�BRA� � tr�RBA�g ÿ tr�RBRA�:
We conclude that when the matrix of plastic hardening moduli is given by Eq. (39), in the case of

multisurface plasticity the loss of ellipticity can be de®ned as a polynomial equation of order n with
respect to H, and the loss of strong ellipticity as a polynomial equation of order 2n with respect to H.

4. Critical plastic hardening modulus and critical orientation for single-surface plasticity

4.1. Preliminaries

In this section, the formulae derived previously will be applied to a general isotropic hardening model
with smooth plastic potential and yield surface. In particular, for the loss of strong ellipticity an explicit
expression of the critical orientation and the critical plastic hardening modulus will be obtained.

In this example, it is assumed that the stress tensor and the unit outward normals to the plastic
potential and the yield surface are coaxial. For an isotropic hardening plasticity model, the yield and
plastic potential functions are generally expressed in terms of the stress invariants Is, J2 and J3. (Here Is
is the ®rst invariant of the stress tensor, J2=1/2 (s:s) and J3 is the determinant of the deviatoric stress
tensor s). Then, it follows that:

Q � 1�������� @ f@sss
��������
@f

@sss
� q1ddd� q2S� q3S2
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and

P � 1�������� @g@sss
��������
@g

@sss
� p1ddd� p2S� p3S

2, �44�

where S=s/(s:s)1/2 is a unit deviatoric stress tensor, and the parameters qi and pi (i=1 to 3) are given in
Appendix A. The principal values of the unit deviatoric tensor S can be written in terms of the single
scalar l $ [0, p/3] called the Lode angle:

Si �
����
2

3

r
cos

�
lÿ 2

3
�iÿ 1�p

�
; i 2 �1,3�: �45�

The ranges of variation of the principal components of S, according to Eq. (45), are as follows:
1=

���
6
p

RS1R
��������
2=3
p

, ÿ1/Z6R S2 R 1/Z6, ÿ ��������
2=3
p

RS3Rÿ 1=
���
6
p
:

Remark 3. In the general noncoaxial case, the tensors P and Q can be separated into deviatoric and
volumetric parts by introducing the angles jP and jQ, and the unit deviators SP and SQ (see Loret,
1992):

Q � cos jQSQ � 1���
3
p sin jQddd

and

P � cos jPSP � 1���
3
p sin jPddd, �46�

where 0 R jP R jQ < p/2. The assumption of deviatoric associativity amounts to postulating that the
directions of the deviatoric parts of P and Q are identical, namely SP � SQ � ÃS: Thus, the principal axes
of the normalized tensors Q and P are coaxial, and can be de®ned in the following forms presented by
Loret et al. (1990) and Loret (1992):

Q � cos jQ
ÃS� 1���

3
p sin jQddd

and

P � cos jP
ÃS� 1���

3
p sin jPddd: �47�

For the cases, p3=q3=0 or p2 q3=p3 q2 (see Baker and Desai, 1982), the tensors P and Q de®ned by
Eq. (44) can be rewritten in a form similar to Eq. (47). However, in general, the tensor ÃS is not equal to
S, so any type of anisotropy can be embodied in ÃS:

In what follows, linear isotropic elasticity is assumed, so that

De � 2GI� lddd
 ddd, �48�
where G and l are the LameÂ constants.

Moreover, we de®ne the deviatoric normal and shear stress in the following form
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sn � n � S � n
and

tn �
�������������������������������������������
n � S2 � nÿ �n � S � n�2

q
: �49�

Using these quantities, the unit deviatoric stress states can be represented by Mohr's circles [Fig. 1(a)],
which are given in a common form

t2n � s2n � snSi � S2
i ÿ

1

2
� 0, �50�

where i = 1, 2 and 3 for the ®rst, second and third Mohr's circles, respectively. Now, if we consider a
new variable

rn � s2n � t2n, �51�
then the Mohr's circle on the plane (sn, rn ) can be represented by three straight lines [Fig. 1(b)]. Note

Fig. 1. Schematic representation of the Mohr's circle; (a) on the plane of the unit deviatoric normal and shear stresses, (b) on the

plane (sn, rn ).
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that the transformation of the Mohr's circle, using the parameter rn de®ned above has been introduced
by Benallal and Comi (1993), and independently by SzaboÂ (1993).

Furthermore, we introduce the following relationships

tr S � 0,

tr S2 � 1,

tr S3 � 3 det S � 1���
6
p cos�3l �,

tr S4 � 1

2
,

n � S2 � n � s2n � t2n � rn,

n � S3 � n � 1

2
sn � det S,

n � S4 � n � 1

2
rn � sn det S,

n � S5 � n � 1

4
sn �

�
1

2
� rn

�
det S,

det S � Si

�
S2

i ÿ
1

2

�

SiSj � S2
k ÿ

1

2
,

and

Si ÿ Sj �
�����������������
2ÿ 3S2

k

q
, when Si > Sj: �52�

In the derivations of these expressions, the equation S3ÿS/2ÿ(det S)dd=0, and the Cayley±Hamilton
theorem were employed.

It is convenient to introduce the following general coordinate system with gi covariant basis vectors:

g1 � n,

g2 � S � n
and
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g3 � S2 � n: �53�
The covariant components of the metric tensor are given by

�gij � �

0BBBBB@
1 sn rn

sn rn
1

2
sn � det S

rn
1

2
sn � det S

1

2
rn � sn det S

1CCCCCA: �54�

In this coordinate system, the tensor Be can be de®ned with the mixed components as

Be � Be
sym � �Be�ijgi 
 g j � GBi

jgi 
 g j, �55�

and the vectors a and b in Eq. (12), using Eqs. (44) and (48), with the contravariant components:

a � 2Gn � P� ln tr P � 2G

���
1� l

G

�
p1 � l

2G
� p1 � p3�

�
n� p2S � n� p3S

2 � n
�
� 2Gaigi

and

b � 2GQ � n� ln tr Q � 2G

���
1� l

G

�
q1 � l

2G
�q1 � q3�

�
n� q2S � n� q3S2 � n

�
� 2Gbigi: �56�

The coordinates Bi
j in Eq. (55) are de®ned by

Bi
j � dij �

1

1ÿ 2n
di1g1j, �57�

and the contravariant components of vectors ai and bk in Eq. (56) can be written as follows:

a1 � ~p1 �
1

1ÿ 2n
� p1 � n� p1 � p3��,

b1 � ~q1 �
1

1ÿ 2n
�q1 � n�q1 � q3��,

a2 � p2,

b2 � q2,

a3 � p3

and

b3 � q3: �58�
The expression for the plastic hardening modulus, (Eqs. (14) and (21)), using the quantities de®ned

above, can be rewritten as
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H le

2G
� 2bigik�Bÿ1�kj a j ÿ c0 �59�

for loss of ellipticity, and

H lse

2G
� bigik�Bÿ1�kj a j �

�����������������������������������������������������������������h
aigik�Bÿ1�kj a j

i�
blglm�Bÿ1�mn bn

�r
ÿ c0 �60�

for loss of strong ellipticity. In Eqs. (59) and (60), the components �Bÿ1�ij are de®ned by

�Bÿ1�ij � dij ÿ
1

2�1ÿ n�d
i
1g1j �61�

and

c0 � P:Q� n
1ÿ 2n

tr P tr Q

� 3p1q1 � p2q2 � 1

2
p3q3 � p1q3 � p3q1 � 3 detS� p2q3 � p3q2� � n

1ÿ 2n
�3p1 � p3��3q1 � q3�: �62�

It is noted that the necessary algebraic operations and symbolic manipulations on these tensor
quantities de®ned above can readily be evaluated by using MATHEMATICA version 2 (Wolfram,
1991), and MATHTENSOR (Parker and Christensen, 1994).

Remark 4. From Eq. (59) and using Eqs. (54), (57) and (58), the plastic hardening modulus can be
expressed as

H le

2G
� As2n � Bsnrn � Cr2n �Dsn � Ern � F, �63�

where:

A � ÿ 1

1ÿ n
p2q2,

B � ÿ 1

1ÿ n
� p2q3 � p3q2�,

C � ÿ 1

1ÿ n
p3q3,

D � 1ÿ 2n
1ÿ n

� ~p1q2 � p2 ~q1� � � p2q3 � p3q2� � 2p3q3 detS,

E � 1ÿ 2n
1ÿ n

� ~p1q3 � p3 ~q1� � 2p2q2 � p3q3

and

F � 1ÿ 2n
1ÿ n

~p1 ~q1 � 2� p2q3 � p3q2�detSÿ c0: �64�
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The function H le/2G in Eq. (63) can be interpreted as a surface over the plane (sn, rn ), and
corresponds to the localization condition for the general three-dimensional case.

Proposition 1. The function H le/2G=f(sn, rn ) in Eq. (63) is a hyperbolic paraboloid surface in the (sn,
rn, H

le/2G ) coordinate system.

Proof. De®ne matrices T and t as the coe�cients of the quadratic form (63):

T �

0BBBBBBBBBBB@

A
1

2
B 0

1

2
D

1

2
B C 0

1

2
E

0 0 0 ÿ1
2

1

2
D

1

2
E ÿ1

2
F

1CCCCCCCCCCCA
and

t �

0BBBBB@
A

1

2
B 0

1

2
B C 0

0 0 0

1CCCCCA:

For the invariants of the matrix T, we obtain

det�T� �
�

1

4�1ÿ n� � p2q3 ÿ p3q2�
�2
> 0

and

IIT � ÿ4 det�T� < 0:

The determinant of matrix t equals zero and its eigenvalues can be calculated in the following form

l1 � ÿ 1

2�1ÿ n�

�
p2q2 � p3q3 ÿ

�����������������������������������������������������������������
� p2q2 ÿ p3q3�2 � � p2q3 � p3q2�2

q �
> 0,

l2 � 0

and

l2 � ÿ 1

2�1ÿ n�

�
p2q2 � p3q3 �

�����������������������������������������������������������������
� p2q2 ÿ p3q3�2 � � p2q3 � p3q2�2

q �
< 0:

From the invariants of matrices T and t, and from the eigenvalues of matrix t, it immediately follows
that the function H le is a hyperbolic paraboloid.
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4.2. Critical plastic hardening modulus for the loss of strong ellipticity

We are now concerned with the loss of strong ellipticity, and an explicit expression for the critical
hardening modulus and the critical orientation will be derived. This analysis is based on the geometric
method which was ®rst proposed by Benallal and Lemaitre (1991) and Benallal (1992), and it was
applied in a slightly di�erent form by Benallal and Comi (1993, 1996), Perrin and Leblond (1993), and
SzaboÂ (1994, 1997).

The function H lse/2G in Eq. (60) can also be interpreted as a surface over the plane (sn, rn ), and the
quantities sn and rn in this function are restricted to the triangular area shown in Fig. 1(b). In Appendix
B, it is shown that there is no maximum of the function H lse inside the triangular area. Consequently,
the maximum of H lse in question must be above the boundary of the triangular area in Fig. 1(b). Using
Eqs. (50) and (51), the sides of triangle are de®ned by rn � 1=2ÿ S2

i ÿ Sisn: This expression is
substituting into Eqs. (54), (57) and (60), to obtain the following three functions (i=1,2,3):

H lse
i �sn,Si �
2G

� Ni
PN

i
Q

8><>:�sn ÿ Sj ��Sk ÿ sn� � m

 
sn � Mi

P

Ni
P

! 
sn �

Mi
Q

Ni
Q

!

�

���������������������������������������������������������������������������������������������������������������������������������������������������������������24�Sj ÿ sn��Sk ÿ sn� ÿ m

 
sn � Mi

P

Ni
P

!2
3524�Sj ÿ sn��Sk ÿ sn� ÿ m

 
sn �

Mi
Q

Ni
Q

!2
35

vuuut
9>=>;ÿ c0,

�65�

where m=(1ÿ2n )/[2(1ÿn )],

Ni
P � p2 ÿ Sip3,

Ni
Q � q2ÿSiq3,

Mi
P � ~p1 � p3

�
1

2
ÿ S2

i

�
and

Mi
Q � ~q1 � q3

�
1

2
ÿ S2

i

�
: �66�

The functions H lse
1 =2G, H

lse
2 =2G and H lse

3 =2G in Eq. (65) are restricted to the sides of the triangle
[Fig. 1(b)], respectively. Because the maximum of the function H lse

i =2G in Eq. (65) may be located on
the sides or the corner points of the triangle, the critical plastic hardening modulus can be calculated as

H lse
crit

2G
� max

i
max
sn

H lse
i �sn,Si �
2G

; i 2 �1,3�, �67�

where sn $ [S3, S2] for i=1, sn $ [S3, S1] for i=2 and sn $ [S2, S1] for i=3.
The necessary condition for a stationary value of the function H lse

i =2G in Eq. (65) is @�H lse
i =2G �=@sn
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�0: Using this condition, the stationary value of the normal stress is de®ned by:

ÿ
slse
n

�i
sta�
ÿU1 ÿ

�������������
KPKQ

p
U2

, �68�

where

U1 � 2�1ÿ 2n�M
i
P

Ni
P

Mi
Q

Ni
Q

ÿ 2�1ÿ n�Si

 
Mi

P

Ni
P

� Mi
q

Ni
Q

!
� �3ÿ n�S2

i ÿ 1,

U2 � 2

 
Si ÿ Mi

P

Ni
P

ÿ Mi
Q

Ni
Q

!

and

KI � 2�1ÿ 2n�M
i
I

Ni
I

 
Mi

I

Ni
I

ÿ Si

!
ÿ �1� n�S2

i � 1; �69�

here, the index I equals P or Q. The stationary value of the normal stress in Eq. (68) may be inside or
outside of the associated interval. However, the range of variation of the normal stress sn is restricted to
the intervals [S3, S2] for i = 1, [S3, S1] for i = 2 and [S2, S1] for i = 3. Thus, its maximum value is
de®ned for the ®rst Mohr circle (i=1) as

ÿ
slse
n

��1�
max�

8>>>><>>>>:
ÿ
slse
n

��1�
sta

if S3 <
ÿ
slse
n

��1�
sta

RS2

S2 if
ÿ
slse
n

��1�
sta
> S2

S3 if
ÿ
slse
n

��1�
sta
< S3

, �70�

for the second Mohr circle (i=2) as

ÿ
slse
n

��2�
max�

8>>>><>>>>:
ÿ
slse
n

��2�
sta

if S3 <
ÿ
slse
n

��2�
sta

RS1

S1 if
ÿ
slse
n

��2�
sta
> S1

S3 if
ÿ
slse
n

��2�
sta
< S3

, �71�

and for the third Mohr circle (i=3) as

ÿ
slse
n

��3�
max�

8>>>><>>>>:
ÿ
slse
n

��3�
sta

if S2 <
ÿ
slse
n

��3�
sta

RS1

S1 if
ÿ
slse
n

��3�
sta
> S1

S2 if
ÿ
slse
n

��3�
sta
< S2

: �72�

Upon the substitution of �slse
n �imax into Eq. (65), the corresponding three maximum values of H can be

calculated. The critical hardening modulus is de®ned as the maximum of these functions
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H lse
crit

2G
� max

i

H lse
i

hÿ
slse
n

�i
max

,Si

i
2G

; i 2 �1,3�: �73�

The critical normal stress �slse
n �crit is de®ned by the one of the three �slse

n �imax, which gives the largest
value of the plastic hardening modulus in Eq. (73).

Remark 5. It is important to note that when the tensors P and Q are symmetric with respect to all
principal axes of stress (P1=P2=P3, and Q1=Q2=Q3), then, Ni

P � 0 and Ni
Q � 0: In this case, the

critical orientation is indeterminate, and the critical plastic hardening modulus is de®ned by

H lse
crit

2G
� 2mMi

PM
i
Q ÿ c0 � ÿ2�1� n�

9�1ÿ n� tr P tr Q �74�

This type of localization mode is called a splitting discontinuity (see Bigoni and Hueckel, 1990a, 1991;
Ottosen and Runesson, 1991a). In this case, the loss of ellipticity and loss of strong ellipticity are
identical.

Remark 6. In the case of deviatoric associative ¯ow rule Eq. (47), the parameters Mi
P=N

i
P and Mi

Q=N
i
Q

in Eqs. (65) and (69), are expressible in the form

Mi
P

Ni
P

� 1� n���
3
p �1ÿ 2n� tan jP,

Mi
Q

Ni
Q

� 1� n���
3
p �1ÿ 2n� tan jQ, �75�

and Ni
P � cos jP, N

i
Q � cos jQ:

In addition, the presented results can easily be applied to the model used by Rudnicki and Rice (1975)
by the following relationships:

tan jP �
����
2

3

r
b

and

tan jQ �
����
2

3

r
m, �76�

where the parameters b and m are de®ned in the Rudnicki±Rice model (see Rudnicki and Rice, 1975;
3(a)).

Remark 7. For the classical shear band localization (loss of ellipticity), an explicit expression for the
critical plastic hardening modulus, using the method considered above, can easily be derived. Because of
in the context of shear band analysis, several explicit solutions have been obtained (see, e.g. Bardet,
1990; Benallal, 1992; Benallal and Comi, 1996; Bigoni and Hueckel, 1991; Ottosen and Runesson,
1991a; Runesson et al., 1991), here only as an alternative solution, some simple expressions will be
presented. According to Proposition 1, there is no maximum of the function H le/2G inside the triangular
area, therefore, the maximum of this function must be at the boundary of the triangular area in
Fig. 1(b). From Eq. (65) (cf. Eqs. (59) and (60)), we obtained the following three functions (i=1,2,3):
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H le
i �sn,Si �
2G

� 2Ni
PN

i
Q

8<:�sn ÿ Sj ��Sk ÿ sn� � �1ÿ 2n�
2�1ÿ n�

 
sn � Mi

P

Ni
P

! 
sn �

Mi
Q

Ni
Q

!9=;ÿ c0, �77�

where the parameters Ni
P, N

i
Q, M

i
P and Mi

Q are de®ned by Eq. (66). The necessary condition for the
stationary value of the function de®ned above is @�H le

i =2G �=@sn�0: From this condition, the stationary
value of the normal stress is de®ned by

ÿ
sle
n

�i
sta�

1ÿ 2n
2

(
Mi

P

Ni
P

� Mi
Q

Ni
Q

)
ÿ �1ÿ n�Si: �78�

For the three Mohr circles the normal stress sn is restricted to the intervals [S3, S2], [S3, S1] and [S2,
S1], respectively. Thus, the maximum values for each of the Mohr circles are de®ned as being similar to
Eqs. (70)±(72). With these quantities, the critical plastic hardening modulus may be expressed according
to

H le
crit

2G
� max

i

H le
i

hÿ
sle
n

�i
max

,Si

i
2G

; i 2 �1,3�: �79�

The critical normal stress �sle
n �crit, then becomes �sle

n �crit� �sle
n �imax, where the index i is associated with

the largest value of the plastic hardening modulus in Eq. (79).

4.3. Critical orientation for the loss of strong ellipticity

The critical shear band orientation, using a method presented by Benallal and Lemaitre (1991) and
Benallal (1992), or another way suggested by SzaboÂ (1994), can also be calculated as

tan2ylse
crit �

Sj ÿ
ÿ
slse
n

�
critÿ

slse
n

�
crit
ÿSk

, �80�

where j=2 and k= 3 if �slse
n �crit��slse

n ��1�max, and j= 1 and k=3 if �slse
n �crit��slse

n ��2�max, and j=1 and k=
2 if �slse

n �crit��slse
n ��3�max:

Note that the critical orientation for the cases of loss of ellipticity (Remark 7) and the Raniecki type
comparison solid (2), using �sle

n �crit and �sRn �crit, can also be obtained from Eq. (80).

Remark 8. Because of the critical orientations calculated from the loss of strong ellipticity condition and
according to the Raniecki type comparison solids (see Appendix B) are identical; from Eq. (80), it is
evident that the critical normal stresses are also identical:ÿ

slse
n

�
crit�

ÿ
sRn
�

crit:

It can readily be checked that Eqs. (68) and (B6), with Eq. (B7), yield the same value of sn.

5. Examples

The presented explicit expressions for the critical plastic hardening modulus and the critical
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orientation can provide di�erent possibilities to compare the loss of ellipticity and loss of strong
ellipticity criteria. Here, only two special cases, the case of axially-symmetric extension and axially-
symmetric compression, will be investigated.

5.1. Axially-symmetric compression

In this case, the Lode angle equals p/3 and S1=S2=1/Z6, S3 � ÿ
��������
2=3
p

: Thus, the triangle in Fig. 1(b)
collapses to a line, while sn $ [S3, S1]. In Eqs. (65)±(69) and Eqs. (77)±(79), the index i equals 2. The
parameters Mi

I=N
i
I, using Appendix A, can be expressed by

MI

NI
� �1� n�� ���

2
p � tan fI����

3
p �1ÿ 2n��1ÿ ���

2
p

tan fI�
, �81�

where the index I equals P or Q, and fI $ [ÿp/2, p/2]; moreover, the angle cI equals p/4 or 5p/4. The
stationary value of normal stress, using Eqs. (68), (78) and (81), can be de®ned by

�sn�sta �
���
2
p �1� 3n� � �1ÿ 3n��tan fP � tan fQ� ÿ 4

���
2
p

tan fP tan fQ

2
���
3
p �1ÿ ���

2
p

tan fP��1ÿ
���
2
p

tan fQ�
, �82�

for the loss of ellipticity and

�sn�sta �
1���
3
p

n
gÿ ���

2
p �3� n��tan fP � tan fQ� ÿ 2�1� 3n�tan fP tan fQ

o
ÿ �������������

3aPaQ
p

2
n
2
���
2
p

tan fP tan fQ � 2n�tan fP � tan fQ� ÿ
���
2
p �1� 2n�

o , �83�

for the loss of strong ellipticity condition, where

g � 1ÿ 7nÿ 6n2 �84�
and

aI � 1� n� 2n2 � 4
���
2
p

n tan fI � 2�1ÿ n�tan2fI: �85�
The critical plastic hardening modulus and the critical orientation, using Eqs. (82) and (83) with Eqs.

(65), (77), (80) and (81), can be easily calculated. When the critical value of the normal stress is identical
to S1 or S3 in Eq. (80), the corresponding critical orientation is equal to zero or p/2, respectively. In
these cases, using Eqs. (82) and (83), a relation between fP and fQ can be de®ned. In Table 1, these
relationships are summarized for the loss of ellipticity (LE) and the loss of strong ellipticity (LSE).

When the conditions given in Table 1 are upheld, the critical orientation is identical to zero or p/2.
Fig. 2 shows these domains on the (fP, fQ ) plane for n=0.3. In Fig. 2(a) for the loss of ellipticity, the

Table 1

Axially-symmetric compression

(sn )crit=S3=ÿZ2/3 (sn )crit=S1=1/Z6

tan ycrit=Zp/2 tan ycrit=08
tan fQ R tan fQr

LE Z2ÿtan fP ÿ
��
2
p

n��1ÿn�tan fP

1ÿnÿ2 ��2p tan fP

LSE ÿ 2
��
2
p

n
1ÿn ÿ tan fP

��
2
p

n��1�n2�tan fP

1�n2�2 ��2p n tan fP
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Fig. 2. Comparison of the limit values of the critical orientation for axially-symmetric compression on the plane (fP, fQ ), (a) loss

of ellipticity, (b) loss of strong ellipticity.
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variation of the critical orientation on the shaded area, using Eqs. (80) and (82), can be calculated by

tan2ycrit �
2� �1� 3n��tan fP � tan fQ� ÿ 2�2� 3n�tan fP tan fQ

�5ÿ 3n��tan fP � tan fQ� ÿ 2�1ÿ 3n�tan fP tan fQ ÿ 8
: �86�

In the case of loss of strong ellipticity, the critical orientation from Eqs. (80) and (83) can be
obtained.

The lines d1 and d2 on Fig. 2 represent discontinuities which correspond to the singularity of Eq. (81)
(1ÿZ2 tan fI=0), while the point D corresponds to the splitting discontinuity.

Remark 9. Note that when the deviatoric asociative ¯ow rule Eq. (47) is applied to the relation between
fI and jI, using Eqs. (75) and (81), the relation can be de®ned by

tan fI �
tan jI ÿ

���
2
p

1� ���
2
p

tan jI

: �87�

For the condition 0 R jP R jQ < p/2, the deviatoric associativity can be seen enclosed by the dotted
line in Fig. 2, which was recently discussed by SzaboÂ (1997).

5.2. Axially-symmetric tension

In the case of axially-symmetric tension, the Lode angle equals zero, S3=S2=ÿ1/Z6 and S1 �
��������
2=3
p

:
The normal stress, similar to the compression case, de®ned on the interval sn $ [S3, S1], and the
parameters Mi

I=N
i
I, using Appendix A, are de®ned by

MI

NI
� �1� n��1� 2 tan cI����

6
p �1ÿ 2n��1ÿ tan cI�

, �88�

where the index I equals P or Q, and cI $ [0, 2p ]. The stationary value of the normal stress, using Eqs.
(68), (78) and (88), can be de®ned by

�sn�stat �
4ÿ �1ÿ 3n��tan cP � tan cQ� ÿ 2�1� 3n�tan cP tan cQ

2
���
6
p �1ÿ tan cP��1ÿ tan cQ�

�89�

for the loss of ellipticity and

�sn�stat �
ÿ

����
2

3

r ��1� 3n� � �3� n��tan cP � tan cQ� ÿ g tan cP tan cQ

	ÿ �������������
6gPgQ

p
4f�1� 2n�tan cP tan cQ ÿ n�tan cP � tan cQ� ÿ 1g , �90�

for the loss of strong ellipticity condition, where

gI � 1ÿ n� 4n tan cI � �1� n� 2n2�tan2cI: �91�
The conditions when the critical orientation equals zero or p/2 are given in Table 2, and are

illustrated in Fig. 3.
Fig. 3. shows the critical domains in the (fP, fQ ) plane for n=0.3. Note that this ®gure was made

from the relationships de®ned in Table 2 using the cI=sinÿ1 tan fI transformation.
In the case of loss of ellipticity, when S3< (sn )crit< S1, the critical orientation can be calculated by
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tan2ycrit �
�1� n��tan cP � tan cQ ÿ 2 tan cP tan cQ�

�1ÿ n��tan cP � tan cQ� � 2n tan cP tan cQ ÿ 2
�92�

while the critical orientation for the loss of strong ellipticity from Eqs. (80) and (90) can be obtained.

Remark 10. In the case of deviatoric asociative ¯ow rule Eq. (47), the relation between cI and jI, using
Eqs. (75) and (88), may be de®ned by

tan cI �
���
2
p

tan jI ÿ 1

2� ���
2
p

tan jI

: �93�

According to this relation, when jI=0 then fI=ÿ24.098, while jI 4 p/2 then fI 4 35.26448, which
corresponds to the d1 or d2 lines in Fig. 3.

6. Conclusion

The main objective of this paper was the analysis of the loss of strong ellipticity condition within the
framework of multisurface and single-surface elastoplasticity in small deformation range. The results
obtained can be summarized as follows.

First, a generalization of the Sherman±Morrison formula for the case where a multiple rank one
updates was presented. Using this formula, some explicit expressions for the determinant of the acoustic
tensor and its symmetric part were derived for the multisurface plasticity models. These expressions are
associated to the loss of ellipticity and loss of strong ellipticity. Moreover, an explicit criterion for
uniqueness was derived. In this context the determinant of the symmetric part of the fourth-order
constitutive tangent tensor was analysed. As an illustrative example, explicit expressions for the plastic
hardening modulus in the case of double-surface plasticity with a one parameter family of hardening
moduli have been presented.

Next, the loss of strong ellipticity has been investigated for single-surface plasticity. An explicit
expression for the critical plastic hardening modulus and the critical orientation, using the same
geometric method, has been derived for both Hill's and Raniecki's comparison solids. These expressions
are valid for a general nonassociative ¯ow rule, and it is assumed that the principal axes of the
normalized tensors P and Q (unit outward normals to the plastic potential and yield surfaces,
respectively) are coaxial.

As noted already, Bigoni and Zaccaria (1992a) have given an analytical solution for the plastic
hardening modulus in the case of Raniecki's comparison solids, which is also a solution for the Hill type
comparison solids (i.e. in their work, it is shown that the loss of strong ellipticity occurs simultaneously
in the Hill's comparison solids and the best chosen Raniecki's comparison solid). However, it should be
emphasized that the results presented in this paper based on a completely di�erent method.

Table 2

Axially-symmetric tension

(sn )crit=S3=ÿ1/Z6 �sn�crit � S1 �
���
2
3

q
tan ycrit=p/2 tan ycrit=08
tan cQ R tan cQr

LE 2ÿtan cP�1ÿn�
2n tan cP�1ÿn

tan cP

2tan cPÿ1

LSE ÿ 2n��1�n2�tan cP

1�n2�2n tancP

�nÿ1�tan cP

1ÿn�4n tan cP

L. SzaboÂ / International Journal of Solids and Structures 37 (2000) 3775±38063798



Fig. 3. Comparison of the limit values of the critical orientation for axially-symmetric tension on the plane (fP, fQ ), (a) loss of

ellipticity, (b) loss of strong ellipticity.
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In addition, an analysis of the onset of shear band localization (loss of ellipticity) has been presented.
Although these results (presented in Remark 7) are well known in the literature, the method used in this
paper provides a proper possibility to compare them with the loss of strong ellipticity.

In particular, as an illustrative example, the critical orientation for the loss of strong ellipticity and
the classical shear band localization (loss of ellipticity) were compared for axially-symmetric
compression and tension.

Finally, it is concluded that the presented expressions for the loss of strong ellipticity can be used to
predict the onset of shear banding, due to the bounding nature of the loss of strong ellipticity over the
loss of ellipticity region.

Acknowledgements

This research has been supported by the National Development and Research Foundation, Hungary
(under Contract: OTKA, T 023929). This support is gratefully acknowledged. The author is also
grateful to Dr. Steven M. Christensen (MathTensor, Inc., USA, http://smc.vnet.net/mathtensor.html) for
helping to use of MATHTENSOR.

Appendix A

The parameters in Eq. (44) are given by

p1 � 1

p0

�
@g

@Is
ÿ 2

3
J2
@g

@J3

�
,

q1 � 1

q0

�
@f

@Is
ÿ 2

3
J2
@ f

@J3

�
,

p2 � 1

p0

�������
2J2

p @g

@J2
,

q2 � 1

q0

�������
2J2

p @f

@J2
,

p3 � 1

p0
2J2

@g

@J3

and

q3 � 1

q0
2J2

@f

@J3
,

where

p0 �
�����������������������������������������������������������������������������������������������������������
3

�
@g

@I0

�2

�2J2
�
@g

@J2

�2

�6J3 @g
@J2

@g

@J3
� 2

3
�J2�2

�
@g

@J3

�2
s
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and

q0 �
�����������������������������������������������������������������������������������������������������������
3

�
@f

@I0

�2

�2J2
�
@ f

@J2

�2

�6J3 @f
@J2

@f

@J3
� 2

3
�J2�2

�
@f

@J3

�2
s

,

Because, P and, Q are unit tensors, namely P:P=1 and Q:Q=1, the principal components of these
tensors can be expressed in the following form

P1 � cos fP cos cP,

Q1 � cos fQ cos cQ,

P2 � cos fP sin cP,

Q2 � cos fQ sin cQ,

P3 � sin fP

and

Q3 � sin fQ, �A1�

where fP and fQ $ [ÿp/2, p/2], and cP and cQ $ [0, 2p ].
From Eq. (44), using the de®nitions above, it follows that0@ cos fP cos cP

cos fP sin cP

sin fP

1A �
0@ 1 S1 S2

1

1 S2 S2
2

1 S3 S2
3

1A0@ p1
p2
p3

1A:
The matrix de®ned above is known as the Vandermonde matrix. In the general case, when the Lode

angle l $ (0, p/3) (l$0 and l$p/3), the parameters pi can be expressed as0@ p1
p2
p3

1A � 1

d

0@S2S3�S2 ÿ S3� S1S3�S3 ÿ S1� S1S2�S1 ÿ S2�
S2

3 ÿ S2
2 S2

1 ÿ S2
3 S2

2 ÿ S2
1

S2 ÿ S3 S3 ÿ S1 S1 ÿ S2

1A0@ cos fp cos cP

cos fP sin cP

sin fP

1A, �A2�

where d=(S1ÿS2)(S2ÿS3)(S1ÿS3). The parameters qi can be calculated in a similar way. When l= 0 or
l=p/3, the expressions presented above are simpli®ed. From P:P=1, using Eq. (44), we obtain

3p21 � 2p1p3 � p22 � 6p2p3 det S� 1

2
p23 ÿ 1 � 0:

When the Lode angle l $ (0, p/3) (l$0 and l$p/3), this equation is represented by an ellipsoid surface
in the ( p1, p2, p3) coordinate system, and when l = 0 (S2=S3=ÿ1/Z6, S1 �

��������
2=3
p � or l=p/3

(S1=S2=1/Z6, S3 � ÿ
��������
2=3
p �, it is represented by an elliptic cylindrical surface. In this last case, the

parameter p1 may be choosen arbitralily, and
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p2 � 1���
6
p cos fP cos cP ÿ 2

����
2

3

r
sin fP �

����
3

2

r
p1

p3 � cos fP cos cP � 2 sin fP ÿ 3p1

9>=>; for l � 0, �fP � tanÿ1 �sin cP��

and

p2 � 2

����
2

3

r
cos fP cos cP ÿ

1���
6
p sin fP ÿ

����
3

2

r
p1

p3 � 2 cos fP cos cP � sin fP ÿ 3p1

9>=>; for l � p
3
,

�
cP �

p
4

or
5p
4

�
:

Finally, we note that when P1=P2=P3 and Q1=Q2=Q3, the angles cP=458 and fP=tanÿ1(1/Z2),
and cQ=458 and fQ=tanÿ1(1/Z2).

Appendix B

In this Appendix, an explicit expression for the critical plastic hardening modulus for the Raniecki-
type comparison solids will be derived. The constitutive tangent tensor for the family of comparison
solids introduced by Raniecki (1979) is de®ned as

D
ep
R � De ÿ De:R
 R:De

4c�H�Q:De:P� , �B1�

where c is a free parameter, and the tensor R is given by

R � P� cQ:

For this model, using Eq. (14) or Eq. (21), the plastic hardening modulus can be expressed as

H R � 1

4c
�R�c�:De � n� � Beÿ1 � �n � De:R�c�� ÿQ:De:P

and the critical plastic hardening modulus corresponds to the solution of the constrained maximization
problem:

H R
crit � max

n
min
c

H R�n,c�,

subject to |n|=1, and c $R+.
Bigoni and Zaccaria (1992a) proved that the extremal problem de®ned above can be rewritten as

H R
crit � min

c
max

n
H R�n,c�, �B2�

subject to |n|=1, and c $ R+. Moreover, they have shown that the critical plastic hardening modulus is
identical for the Raniecki and the Hill type comparison solids, namely

H lse
crit � H R

crit, �B3�
or
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max
n

H lse�n� � min
c

max
n

H R�n,c�,

where H lse
crit is the critical plastic hardening modulus for the loss of the strong ellipticity condition in the

Hill type comparison solid (see Eq. (4), and H lse(n) is given by Eq. (21).
Now, the maximization problem in Eq. (B2) can be solved, using the method presented in Remark 4,

by making the following identi®cations pi4 ( pi/c+qi )/4 and qi4 ( pi+cqi ). It can easily be shown that
for an associative constitutive model, the function HR(sn, rn,c )/2G is a parabolic cylinder surface in the
(sn, rn, H

R/2G ) coordinate system. It is obvious that the parameter c does not e�ect the type of this
surface. Hence, the maximum of function HR(sn, rn, c ) may be located on the boundary of the triangle
[see Fig. 1(b)].

The boundary lines of the triangle, using Eqs. (50) and (51), can be de®ned as

rn � 1=2ÿ S2
i ÿ Sisn, �B4�

where index i corresponds to the ®rst (i = 1), the second (i = 2), and the third (i = 3) Mohr circle,
respectively.

From Eq. (63), using Eq. (B4) and the indenti®cations de®ned above, we obtained the following three
functions (i=1,2,3):

H R
i �sn,c,Si �

2G
�
�
Ni

P � cNi
Q

�2
2c

24�sn ÿ Sj ��Sk ÿ sn� � 1ÿ 2n
2�1ÿ n�

 
sn �

Mi
P � cMi

Q

Ni
P � cNi

Q

!2
35ÿ c0, �B5�

where the parameters Ni
P, N

i
Q, M

i
P and Mi

Q are de®ned in Eq. (66).
The critical plastic hardening modulus is de®ned by the solution of the problem

H R
crit

2G
� max

i
min
c

max
sn

H R
i �sn,c,Si �

2G
; i 2 �1,3�:

For the solution of the maximization problem with respect to sn, we obtain:

@
�
H R

i �sn,c,Si �=2G
�

@sn
� 0 �) ÿ

sRn
�i

sta� �1ÿ 2n�M
i
P � cMi

Q

Ni
P � cNi

Q

ÿ �1ÿ n�Si: �B6�

Let us introduce the notation

~H
R

i �c,Si �
2G

�
H R

i

hÿ
sRn
�i

sta
,c,Si

i
2G

:

Then, the minimization problem for ~H
R

i �c,Si �=2G with respect to c can be solved. The stationary
value of c is given by

@

h
~H
R

i �c,Si �=2G
i

@c
� 0 �) ci

sta �
������������������������������������������������������������������������������������������������������
2�1ÿ 2n�Mi

P

ÿ
Mi

P ÿNi
PSi

�ÿNi2
P

�
S2

i �1� n� ÿ 1
�

2�1ÿ 2n�Mi
Q

�
Mi

Q ÿNi
QSi

�
ÿNi2

Q

�
S2
i �1� n� ÿ 1

�
vuut : �B7�

Finally, the critical plastic hardening modulus is de®ned by the maximum of the three functions,
~H
R

i �ci
sta,Si �=2G, namely:
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H R
crit

2G
� max

i

~H
R

i

ÿ
ci

sta,Si

�
2G

; i 2 �1,3�:

It can now be noted that the critical plastic hardening modulus, H R
crit=2G, is located on the sides or

the corner points of the triangle. From Eq. (B3), it is easy to conclude that the critical plastic hardening
modulus for the family of comparison solid analysed in this paper, is also located on the boundary of
the triangle. In other words, the maximum of H lse/2G in Eq. (60) must be above the sides (or the corner
points) of the triangular area in Fig. 1(b).

Note that the loss of strong ellipticity condition for the Raniecki type comparison solids was analyzed
by Bigoni and Zaccaria (1992a). They presented an analytical solution for the critical plastic hardening
modulus, however, the result presented herein is more explicit, and it was derived in a di�erent way.
Nonetheless, the two di�erent solutions provide identical numerical values.

Finally, it is interesting to investigate the Raniecki type comparison solid in the context of loss of
uniqueness. The general bifurcation criterion is ®rst satis®ed when the determinant of the symmetric
part of the tangent modulus tensor is equal to zero (see, e.g. Ottosen and Runesson, 1991a; Neilsen and
Schreyer, 1993; Ottosen and Ristinmaa, 1996). From this condition, an expression for the plastic
hardening modulus can be obtained. In the case of Hill type comparison solid, using the symmetric part
of Dep de®ned by Eq. (4), the plastic hardening modulus is given by

det Dep
sym � 0 4 H g

�Hill� �
1

2

n ������������������������������������
�Q:De:Q��P:De:P�

p
ÿQ:De:P

o
: �B8�

This expression has previously been obtained, e.g., by Raniecki and Bruhns (1981), Runesson and
Mroz (1989), Bigoni and Hueckel (1991) and Neilsen and Schreyer (1993).

In the case of Raniecki's comparison solid, using the tensor D
ep
R de®ned by Eq. (B1), the plastic

hardening modulus can be expressed as a function of c:

det D
ep
R � 0 �) H g

�Raniecki ��c� �
1

4c
P:De:P� 1

4
cQ:De:Qÿ 1

2
Q:De:P: �B9�

Then, the critical plastic hardening modulus is de®ned by�
H g
�Raniecki �

�
crit
� inf

c
H g
�Raniecki ��c�:

The solution for the stationary value of c is obtained as

@
h
H g
�Raniecki ��c�

i
@c

� 0 �) ccrit �
�����������������
P:De:P

Q:De:Q

s
: �B10�

Substituting ccrit into Eq. (B9), the critical plastic hardening modulus takes the same form as Eq.
(B8):

�
H g
�Raniecki �

�
crit
� H g

�Raniecki ��ccrit� �
1

2

n ������������������������������������
�Q:De:Q��P:De:P�

p
ÿQ:De:P

o
: �B11�

This result was ®rst established by Raniecki (1979).
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